a2 United States Patent

Helms et al.

US009105260B1

US 9,105,260 B1
Aug. 11, 2015

(10) Patent No.:
(45) Date of Patent:

(54) GRID-EDITING OF A LIVE-PLAYED
ARPEGGIO

(71)
(72)

Applicant: APPLE INC., Cupertino, CA (US)

Inventors: Jan-Hinnerk Helms, Hamburg (DE);

Markus Sapp, Appen-Etz (DE);
Thomas Sauer, Rellingen (DE)

(73)

")

Assignee: Apple Inc., Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 6 days.

@
(22)

(1)

Appl. No.: 14/254,489

Filed: Apr. 16, 2014
Int. CI.
G10H 1/28
G10H 136
G10H 138
US.CL
CPC . GI0H 1/28 (2013.01); G10H 1/36 (2013.01);
GI10H 1/386 (2013.01); GIOH 2210/185
(2013.01)

(2006.01)
(2006.01)
(2006.01)
(52)

(58) Field of Classification Search
PC G10H 1/28,2210/185, 1/36, 1/386

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,617,602 A * 11/1971 Kniepkamp 84/716
3,718,748 A * 2/1973 Bunger 84/716
3,842,182 A * 10/1974 Bunger 84/716

400~

3,842,184 A * 10/1974 Kniepkampetal. 84/655
4,154,131 A * 5/1979 Studeretal. 84/638
4,156,379 A * 5/1979 Studer ..o, 84/638
4,179,970 A * 12/1979 Faulknerco.o..... 84/716
4,182,212 A * 1/1980 Sigekiccooovviviiniiinnnn. 84/716
4,185,530 A * 1/1980 Robinson et al. . 84/704
4,187,756 A * 2/1980 Robinson et al. . 84/655
4,191,081 A * 3/1980 Deutschetal. 84/669
4,881,440 A * 11/1989 Kakizakiccooovevrinnnene. 84/609
4,926,737 A * 5/1990 Minamitaka 84/611
5,973,253 A * 10/1999 Hiratacccovviiniinns 84/609
6,051,771 A * 42000 lizuka ... 84/622
2005/0016366 Al* 1/2005 Itoetal. ..o 84/716
2008/0072744 Al* 3/2008 Itoetal. ..o 84/638
2015/0013532 Al* 12015 Adametal. ... 84/638

* cited by examiner

Primary Examiner — David Warren
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

A method including receiving a first set of performance data
corresponding to a first plurality of MIDI-based notes in a first
rhythmic order. The first plurality of MIDI-based notes may
form a first arpeggio, with each of the first plurality of notes
having a corresponding first performance data. The method
further includes receiving input data indicating a change to
the first performance data corresponding to a note in the first
plurality of notes, changing the first performance data for the
corresponding note using the input data, receiving a second
set of performance data corresponding to a second plurality of
MIDI-based notes, and applying the changed first perfor-
mance data to the second performance data. Applying the first
changed performance data includes editing the second set of
performance data in real-time by replacing the second per-
formance data with the changed first performance data.

20 Claims, 16 Drawing Sheets

N [&) tnst ¥ i
@ { Factory Defauit v)
= (15| [Compare § [Copy 1 Pasts)
T
AAAAAA :]
(-} taten | tode (T Trancposs)
NOTE ORDER
410 Variatron [Oct Range
.. Y W il W N
i I T b4 ®,
Gl ali=lt)
/ ¢ 7 ™\ , h\;-)
a2 413 414 415 418 a7 4
- 438
cof i PATTERN 2z | OPTIONS & | KEYBOARD 4| CONTROLLER |
]
v Ui-ase
agg-t)} | MDY By
5 i
4 :] i
2 3 & 5 & 7 8 8 to 4 1z 43 14 8 15}«1:"
{450
L~ Arpaggiator

U.S. Patent Aug. 11, 2015 Sheet 1 of 16 US 9,105,260 B1

136

A
Y
oy
B2

127 ¢
136
O,,
200
8
240 — 239
238 228 220
n H" el Poomer iy i 54 0
& ”:a Ad”'? ‘E 1 Bosd é#
ot |9 d 3 """" Q N <
®) B 7 s 7
K 220 I 239 240
FiG. 2
360
£
43 e
LN - i o e & - i
& } - B IS

FIG. 3

US 9,105,260 B1

Sheet 2 of 16

Aug. 11, 2015

U.S. Patent

FOid

aoyeiBfaday

g8y -

aob -

el

i

\T: YT S

r Ovk

™ G

I
{
o4
3

¢ HIATIOHINGD | 57 QHVYOGATM ¥ SNOILHO

ey —. gz LW 134 Si¥ Fi¥ £y iy FER 'S
:mml\,q S y , / / \ \ w\%\/- //\//\“m
s TaTsel & e Y@y
: m . W \\Sq ./\wn\ﬁu HW 'WA.”V m M_v @‘ /\. < mf\ 80%

o m oS
sBuey 190 :wa:ax, E ww.v / %
e
#3300 J10N

........................ ,
“ NN
8ov 209~
o 3 08} | MasiA {Tmseq | fdop | [wzdwag] [| & |
)
(s Jinejeg Ao1oeg) 0,

§ 3sU

(SN

US 9,105,260 B1

Sheet 3 of 16

Aug. 11, 2015

U.S. Patent

gig

ioyeibhadiy

<1

{55 -

8%

QL8

t42

b ai @ 8

835
7
5 4

386 ¥8% 84

/

¢ 4

Y

Lo e | ogmey |

I—

g

O

m AL m

HHTICULNOD

JuvOgAZIA

SNOLLLO

MuZLivd

Mmﬂw\\\;/l MO

7
mg bv

5.
7
t

Ly

§#I0AF0 JLON

| aseq
m BiBie0

ﬂ EELL PPN

apap BaYRg

BN

{ swemy

Adog | [asmsweg] [<1 | 1>}

hr\./

7
ynejag Aioyoey) ,m__u

&

AL

US 9,105,260 B1

Sheet 4 of 16

Aug. 11, 2015

U.S. Patent

9 °Sid
snyeiBfinday <
- .v\mw £88 N\mm wwm
9t St ®L €L 2t Lk BL & & 4L 9 mmme\
]
r
_ BATy m
% HIATICHINOGD QUYO8AIH SNOLLHO NANILLYL
1€ o BO{E
O O : : =
{ I aloel Flw] e [v] € 95
em ¥ ! O \,H V S
Zﬁnmwﬂv._um\r “.nn:nn:@wwn\ﬂ nnnnnnnnn u
ayey
H30H0 J1L0N
fdikd J spon HoIey M\.H,.\H..\H}W

=Rk Yo GO | IMAA

§ 354§

[oyseg | Adeg | | asedwon] [<4 | B |

m.y ynegeq Asoyaeg) @
&

US 9,105,260 B1

Sheet 5 of 16

Aug. 11, 2015

U.S. Patent

L Ol

so1eiBfedsy

<i

] wousesny \

g gl Fi el Zi 123 Gl & 2 L g g

¥9L
.,\
b

/111111111111\.

€84 N\mm 1L
{4/

AIATICHINOD QuvOgAIM SNOILJO

MUz LIV

SR AN

1884 \aﬁl/ga_w

s

K

)

4

o

)

A“\./,\/‘:\\\.\\

\' \A.M\\\\j/\

uoneeR

e

{evr)

ayey

AICHO JLON

gy

(] [ARt

m o884 |

fdop | | esedwop | | <G | D |

mv

)
REIET iﬁommv fo

&

US 9,105,260 B1

Sheet 6 of 16

Aug. 11, 2015

U.S. Patent

80
Joyeiffsdiy <
G G i £t it Gl 3 & £ 9 4 i
L
HITIOHINOD GUYO8AZSM SNOILLJO Mu=LLIYd
ey ol
b 3 Q , 2 ; ﬁm\\w‘iﬂﬂ\!\/
z 4 i =1 & i
: el | M o d M X w L4 z ¢ ,ﬁx\\\
A U = : o
é UCHELRA 3
HAGHO JLON
P ek PPy apeyy | wspey £ .
AR % 003 | ata [evseq | Adop || asedwopl{ < | p | ~
(= ynejaq A1oioed) ﬂm%
o | 38U}

US 9,105,260 B1

Sheet 7 of 16

Aug. 11, 2015

U.S. Patent

soweiBloday

<

1 (wesng)

21 g ¥i 4% 4 by [6 8 g ¥ € Z b
1
HATIOHLNGD GudVOdASM SNOIL4O MuZLIYd
388 e IO
" J b - -
Ton) ez p v e [v] B
AU “ oNCT
Iiuw:wm wo uUDjELIRA m\/.................W...MMWM... . . .
H30H0 J1L0N
128y _ wawmaw (epe yepem | weied =

]

[siseg | Adon | [amdwen) | < | 1>}

O

J

Hneisg ?cuummv Y

®

US 9,105,260 B1

Sheet 8 of 16

Aug. 11, 2015

U.S. Patent

| isug

0L "SI
soyeiBBadiy 4
£ 7T (_Eoisng
£ [44 0z 14 81 g1 143 £i Zh i34
o
_ HATIOHINGD GuUVOaAIM SNOLLLO MAZLLYd
Ed\m\)wﬂwa
‘ q J i Q : “ \\/ e AN
z z <y [. A A {~ _\\,// ,w
£ £ &A= wAﬂ _ Mq T i .@ /\/an..x\k\ 4 \
, \ g oW
= vw\\, CTTRRTTY
ayey
H€A0HO JLON
(epw Ty epow yoe »aa:»w A«/_ J
——t TR T T o
[(orseg | Adoy | [eedwan] [< | >} .
(a ynegag Aioyded) @

®

US 9,105,260 B1

Sheet 9 of 16

Aug. 11, 2015

U.S. Patent

4 "Oid

nyeiBbaday <

i gL k4 €L

142

g9ll 1944 wmww mwﬁ. Fakk mw\x wmx\ Wit B
AR TR m\ N\ § ¢ \ &4 \ [ew | 1say

L]

HIATIOMINGD

JUYOHAIM SNOILLO MMIALLYd

abuey 120 [USMAFFY

J

][]

{ PTHD)

HA0H0 JLON

Py apon HELY

i is % 004 | IMeIA

[egseg | Adop | [awedwon| { <t | > | .
0
{a }negag Aioioeyg) -

| R

®

US 9,105,260 B1

Sheet 10 of 16

Aug. 11, 2015

U.S. Patent

¢t Oid
sopeibBaday <
o y (weisRg)
9921 m wer ven m&ww A TA m m 514
9 5 ¥i P T /_‘_. mﬂ m\ m FA 2 e V m Z 13
! | I——
)
...................... EC
HATIOHLINGD QUVOHASY SNOILJO MEaLiYd
388 e 0L
. S e/
s LA y PN
77N
z z a L e . J
e ¢ G | <A “ % __ A * ¢ * ﬁ \A,W&K\/)i
v el oN{ T2
(SBusw 5 | uousuea LA
ayey
HIGHO FLON
iesin . — @wwﬂr { 1880y \ apay yoyey - L ~
% 00y | msta {_mseg | Adey]| wedwoni{ g [b] e
(e nesRg \Couummw w4
LIS ®

US 9,105,260 B1

Sheet 11 of 16

Aug. 11, 2015

U.S. Patent

PLOI4
soreififisdiy <
- L (RS TT)
Go9CE YICL €oSh 2981 19C1 m
A A A
g st A d d n) g

_ HITIOHINGD QUVO8BAIM SNOILJO
. ISR e JONG
4 m..u, b 7 /M\.I//\./\/
Z W Z nﬂ.\}(; A N ﬁl\,\) -
£ ¢ m \&V o z MA w_ m\ i “ i @ _ \ \A//(\\%V/
v \ v o1 .
sfuey o | uoielzs { 81/t 3}
R a1y
HAGHO J1I0N
H {5 % 88Y | asiA [siseg | Adog | [wedwes}| < | b | .
(a N80 ESommv @

[

I 384

)

U.S. Patent

Aug. 11, 2015 Sheet 12 of 16

NOTE ORDER

Rate

C 48 Triplet.

ol

3
2
1

| PATTERN OPTIONS KEYHBOARD | CONTROLLER |
Nate Length Randwm Veinaity Af.’.t..f.(.!’:.(..; Swing Gyale Langth
TR D) { 34/)] (Yon%) { {saw
K/,;\\ /»\ ((/i?—’g\?;\
- OO ©
{ ""g(f(""\, an’l Brid Crm As F‘!ayed

FiG. 14

NOTE ORDER

Rate

3/8 Triplat

[o]

3
2
1

| PATTERN

OPTIONS KEYBOARD CONTROLLER]

toput Snap | link to rate

<

b

Kay D seate (___ Ghromatis

Remate Keoybousd Sl {j} §

Remoie

Wi Rrpegyio

[

i}

(g

o3 c4 (4] (3

FiG. 15

US 9,105,260 B1

U.S. Patent

Aug. 11, 2015

Sheet 13 of 16

US 9,105,260 B1

4

fo the First Performance Data

Receive Input Data Requesting a Change| 1730

A 4

Change the First Performance Data

Based on the Input Data

A4

Receive a Second Performance Data

Y

Apply the Changes Made to the First
Performance Data to the Second

Performance Data

FIG. 17

NOTE ORDER
4 ‘ g LA & ({%
| PATTERN OPTIONS | KEYBOARD j
MBS Suotrotier { BA Bustain Y 335)} { o { Qff 3
Dastination 1 Lateh M <nous ¢ 3 4 none . 3 { . ORe - 3
FiG. 18
1700
1710 &
Receive a First Performance Data e
v
1720
Grid-capture the first performance data T

U.S. Patent

Aug. 11, 2015 Sheet 14 of 16

US 9,105,260 B1

- 1880
Perf Data 7] 1825
GCENUS IR § ST
mudio 1R
Processing | .~ 1818
Unitfs}
1820
r
[
&= X)
@) (Factory Befauit v}
(<>} (Compare } | copy | Pasie | iow!
NOTE ORDER
Variatian
- : f\] 7y
AEIEAEI 2RI
- - O 1 3
PATTERN OPTIONS KEYBOARD CONTROLLER
+ 0 3 & 35 8 F &8 3 14 11 12 13 14 15 18
= Arpeggiater
1885

FiG. 18

U.S. Patent

Aug. 11, 2015 Sheet 15 of 16
Storage
Subsystem
1915 Music
.
Editing App Processor 1903
1948
tger input Ussr Cutpud Network
Devices Devices interface
1920 — S 1925 S 1835
FiG. 19
2002 {Browser| |{~2010
2002~ ;:::::::5
JEEEEEEEEEE) {5

SRR

R

FiG. 20

Application |
Server

312008

US 9,105,260 B1

19840

20600

U.S. Patent Aug. 11, 2015 Sheet 16 of 16 US 9,105,260 B1

2104 MID! Input input via Ui, KBD: 2102
(e.g. Keyboard) Rest, Tie, Chord

MIDI Note Message L2110
] Deconstruction
MIDI Note Number

(pitch)

MIDI Velocity, Rest, Tie, Chord

MID! Note Number | ~2120 Allocationto /2160
Analysis and Sorting Arpeggiator Steps
+ [Memory] + {Memory}
/2130 CAPTURE

to Step Grid

Note Order Processing et N‘,’:tfefeger
l "As Played" 2172 2174
LOCK A
MID} e

Note Number l Liv Step Grid

W 2182 User Edits
?140

2180
MIDI Message Assembl f 2176
£85ag empiy .
(Note Number [pitch] + | |at—o, Ot (F)jr‘é SSSEXE'OC‘W -
Note On/Off + Velocity) g
T }190
M Note On/Off 2192
Note Message Generation

FiG. 21

US 9,105,260 B1

1
GRID-EDITING OF A LIVE-PLAYED
ARPEGGIO

BACKGROUND

Virtual musical instruments, such as MIDI-based or soft-
ware-based keyboards, guitars, basses, and the like, are ubiq-
uitous in contemporary music across many different genres.
Virtual instruments allow a user to play virtually any sound
that a typical acoustic instrument could play and much more.
Amateur musicians with little to no experience on a particular
instrument or with music composition may find that virtual
instruments are more intuitive and can provide simplified
ways of creating music without needing the manual dexterity
or knowledge of music theory that a conventional instrument
may require.

Software-based music production tools can be used to cre-
ate many different genres of music and provide resources that
can allow a user to quickly and easily create musical compo-
sitions without the need for any appreciable proficiency at a
particular instrument. For example, musical passages can be
created in real-time, in a methodical stepwise fashion, or a
combination thereof. Notes, chords, melodies, and harmonies
can be created, and in some cases, the software can provide
shortcuts that can make producing music even easier without
the need for understanding its theoretical underpinnings. For
example, music production software may help a user create a
chord progression with diatonic harmony without requiring
the user to understand the theory of the chord sequence. As a
result, software-based music production tools have become
ubiquitous across many genres of music. Although this docu-
ment refers to music production tools generally as digital
audio workstations (DAWSs)(e.g., Logic Pro™), it should be
understood that any suitable production tool can implement
the concepts and embodiments described herein and can addi-
tionally include, but are not limited to, software sequencers,
synthesizers, drum machines, Musical Instrument Digital
Interface (MIDI) keyboard workstations, software plug-ins,
and the like.

One type of musical technique that conventionally requires
some proficiency is the arpeggio. An arpeggio involves the
playing or sounding notes of a chord in a sequence, rather than
playing them simultaneously. For example, a C major chord
comprises the notes of C, E, and G. One example of a C major
arpeggio may involve playing the notes of C, E, G, E, and C
in succession, one after the other. This technique can become
physically challenging to perform when played with fast tem-
pos, large octave ranges, complex chord structures, difficult
chord changes, or the like. Thus, many systems incorporate
features to automate the performance of arpeggios and help
create musical sequences and progressions that could not
otherwise be played by those lacking in musical proficiency.
An arpeggiator can streamline the process of creating an
arpeggio by automatically stepping through a sequence of
notes based on an input (e.g., chord). An arpeggiator is a
feature typically available on synthesizers, digital audio
workstations (DAW), software sequencers, or other music
creation programs or tools that can automatically step
through a sequence of notes based on an input (e.g., chord) to
create an arpeggio. The notes can often be transmitted to a
MIDI sequencer for recording and editing. An arpeggiator
typically can control the speed, range, and order in which the
notes play, including patterns trending upwards, downwards,
or randomly. More contemporary arpeggiators allow the user
to step through a pre-programmed complex sequence of
notes, or even play several arpeggios at once.

20

25

30

40

45

2

Although arpeggiators can be a highly useful and powerful
creative tool, many users find that conventional arpeggiators
are difficult or cumbersome to use, they are limited in their
application, or require extensive tinkering to generate a har-
monically pleasing and useful sequence. These problems lead
to frustration and make arpeggiators less useful for many
practical applications. Therefore, a need exists for an arpeg-
giator that can be applied to a broad spectrum of applications
in a seamless, intuitive, and musically inspiring way.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates aspects of musical performance data
including velocity characteristics, according to certain
embodiments of the invention.

FIG. 1B illustrates aspects of musical performance data
including velocity characteristics, according to certain
embodiments of the invention.

FIG. 2 illustrates aspects of musical performance data
including notes, rests, and note ties, according to certain
embodiments of the invention.

FIG. 3 illustrates aspects of musical performance data
including rhythmic timing, according to certain embodiments
of the invention.

FIG. 4 is a simplified diagram illustrating aspects of an
arpeggiator interface, according to certain embodiments of
the invention.

FIG. 5 is a simplified diagram illustrating aspects of a live
performance on an arpeggiator interface, according to certain
embodiments of the invention.

FIG. 6 is a simplified diagram illustrating aspects of a
latched live performance on an arpeggiator interface, accord-
ing to certain embodiments of the invention.

FIG. 7 is a simplified diagram illustrating aspects of grid-
captured live performance on an arpeggiator interface,
according to certain embodiments of the invention.

FIG. 8 is a simplified diagram illustrating aspects of grid-
editing a live captured arpeggio on an arpeggiator interface,
according to certain embodiments of the invention.

FIG. 9 is a simplified diagram illustrating aspects of grid-
editing a live captured arpeggio on an arpeggiator interface,
according to certain embodiments of the invention.

FIG. 10 is a simplified diagram illustrating aspects of grid-
editing a live captured arpeggio on an arpeggiator interface,
according to certain embodiments of the invention.

FIG. 11 is a simplified diagram illustrating aspects of a
latched live performance on an arpeggiator interface, accord-
ing to certain embodiments of the invention.

FIG. 12 is a simplified diagram illustrating aspects of grid-
editing a live captured arpeggio on an arpeggiator interface,
according to certain embodiments of the invention.

FIG. 13 is a simplified diagram illustrating aspects of grid-
editing a live captured arpeggio on an arpeggiator interface,
according to certain embodiments of the invention.

FIG. 14 is a simplified diagram illustrating aspects of an
options control menu on an arpeggiator interface, according
to certain embodiments of the invention.

FIG. 15 is a simplified diagram illustrating aspects of a
keyboard control menu on an arpeggiator interface, according
to certain embodiments of the invention.

FIG. 16 is a simplified diagram illustrating aspects of a
controller options menu on an arpeggiator interface, accord-
ing to certain embodiments of the invention.

FIG. 17 is a simplified flow diagram illustrating aspects of
a method of grid-editing a live-played arpeggio on an arpeg-
giator interface, according to certain embodiments of the
invention.

US 9,105,260 B1

3

FIG. 18 illustrates an example of a system that can enable
a user to compose and create arpeggios with a number of
virtual instruments on a software-based music application,
according to certain embodiments of the invention.

FIG. 19 illustrates an example of a computer system oper-
able to run software configured for grid-editing live played
arpeggios, according to certain embodiments of the inven-
tion.

FIG. 20 illustrates a simplified diagram of a distributed
system operable to perform aspects of grid-editing live played
arpeggios, according to certain embodiments of the inven-
tion.

FIG. 21 is a high level flow diagram illustrating aspects of
a system for operating an arpeggiator, according to certain
embodiments of the invention.

DETAILED DESCRIPTION

Embodiments of the invention generally relate to software
configured for generating, recording, editing, and producing
musical performances. More specifically, embodiments of
the invention relate to real-time editing of an arpeggio in a
musical performance.

Real-time editing of live-played arpeggios allows a user to
physically play an arpeggio (or build one in a step-wise fash-
ion) and capture aspects of the performance in a grid-type
interface. Certain aspects of the arpeggio performance (i.e.,
performance data) include the velocity of the notes, the type
of note (e.g., rest, note, tie), and the rhythmic order of the
arpeggiated notes. The captured arpeggio performance data
can then be applied to subsequent chords in real-time to
automatically create new arpeggio sequences based on the
captured performance data. The user can further edit the
performance data (e.g., change velocity data) in real-time
after the performance is captured, while simultaneously cre-
ating, playing, and altering arpeggiated performances during
a live performance.

In some embodiments, a method includes receiving a first
set of performance data corresponding to a first plurality of
MIDI-based notes in a first rhythmic order. The first plurality
of MIDI-based notes may form a first arpeggio, with each of
the first plurality of notes having a corresponding first perfor-
mance data. The method further includes receiving input data
indicating a change to the first performance data correspond-
ing to a note in the first plurality of notes, changing the first
performance data for the corresponding note using the input
data, receiving a second set of performance data correspond-
ing to a second plurality of MIDI-based notes, and applying
the changed first performance data to the second performance
data. Applying the first changed performance data includes
editing the second set of performance data in real-time by
replacing the second performance data with the changed first
performance data. In some embodiments, note data can be
received and can include pitch, velocity, note characteristics
(rest, tie, etc.), tone, other other aural characteristics, all of
which can be edited using the grid-editing capabilities
described herein. Although the wvarious embodiments
described herein tend to focus on editing note velocities and
identifiers (e.g., note, tie, rest), it would be appreciated by one
of ordinary skill in the art with the benefit of this disclosure
that incorporating other parameters in grid-editing imple-
mentations are possible.

Musical Performance Data

Musical performance data can include any number of per-
formance characteristics that define how a musical element is
played (or not played) in an arpeggio. For example, musical
performance data can include velocity data, note data (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

4

note type, rest type, note ties, etc.), rhythmic order data,
timing data, pitch data, or any type of data that can charac-
terize aspects of the performance, as would be appreciated by
one of ordinary skill in the art with the benefit of this disclo-
sure.

Velocity is one type of musical performance data that can
be described as the speed or force with which the key is being
hit. In a MIDI input device (e.g., keyboard), the harder a key
is played, the higher the velocity value is registered. Simi-
larly, the softer the key is played, the lower the velocity value.
In MIDI, velocity is typically measured on a scale from 0 to
127, with 127 being the highest value that can be registered.
It would be understood by one of ordinary skill in the art that
any range of values, MIDI or otherwise, can be used to rep-
resent key velocity values.

FIG. 1A illustrates aspects of musical performance data
100, according to certain embodiments of the invention. FIG.
1A includes a keyboard 120 (e.g., MIDI keyboard) with keys
122,124,126, and 128. A user 110 is depressing key 128 at a
low velocity. The velocity bar 130 indicates a velocity of 35
out of 127, which is a relatively low velocity (i.e., a soft key
press).

FIG. 1B illustrates aspects of musical performance data,
according to certain embodiments of the invention. FIG. 1B
includes a keyboard 120 (e.g., MIDI keyboard) with keys 122,
124,126, and 128. A user 110 is depressing key 128 at a high
velocity. The velocity bar 130 indicates a velocity of 120 out
of 127, which is a relatively high velocity (i.e., a hard key
press). Although FIGS. 1A and 1B depict a user depressing
key 122/128 at a certain velocity, key presses can be auto-
mated and may include any velocity, predetermined, real-
time generated, and the like.

Note data is another type of musical performance data that
can be described or identified as one of a note, a rest, or a tie.
Notes can include quarter notes, half notes, whole notes, or
other note intervals, and any such arrangement or grouping,
etc., is possible. A rest is an interval of silence in a piece of
music, marked by a symbol indicating the length of the pause
and, like notes, may be of any desired duration. A tie is
represented by a curved line that connects the heads of two
notes of the same pitch and name, indicating that they are to
be played as a single note with a duration equal to the sum of
the individual notes’ note values. For example, a whole note
may span over two measures and be noted with a tie to show
that the note sustains during that time. Notes, rests, and ties,
and their respective uses and applications would be under-
stood by one of ordinary skill in the art. FIG. 2 illustrates
aspects of musical performance data, according to certain
embodiments of the invention. Measure 200 includes a num-
ber of musical elements including a sequence of notes 220,
rests 230, and ties 240 that group certain notes together.

Rhythmic order data is musical performance data that
refers to the order in which notes are received. Timing data,
which can be a part of rhythmic order data, is musical perfor-
mance data that refers to the timing of the sequence of, e.g.,
notes or rests, in a musical passage. FIG. 3 illustrates aspects
of musical performance data including rhythmic data and
timing data, according to certain embodiments of the inven-
tion.

Grid-Edit Arpeggiator Interface

FIG. 4 is a simplified diagram illustrating aspects of a
graphical user interface (Arp GUI) 400 for an arpeggiator,
according to certain embodiments of the invention. Arp GUI
400 includes a start/stop button 402, latch 404, mode selector
406, rate control 408, note order selector 410, variation con-
trol 420, octave range selector 422, control tabs 430 compris-
ing pattern control 432, options control 434, keyboard control

US 9,105,260 B1

5

436, and controller options 438, and edit field 440. Note order
selector 410 includes up button 412, down button 413,
up/down button 414, in button 415, random button 416, and
free play button 417. Edit field 440 includes live mode 442,
grid mode 446, and grid-capture button 444, note velocity
region 450, note position region 460, and arpeggio progress
bar 480.

Start/stop button 402 starts and stops an arpeggio generated
by the arpeggiator. Latch button 404 is configured to “latch”
notes (or rests) to create arpeggios of any desired length, e.g.,
in a live setting. With latch button 404 selected, notes can be
individually added by a user (or by automation) to create an
arpeggio of any desired length without having to physically
play every note ofthe arpeggio at the same time. For example,
a user can play 4 notes with her left hand and four notes with
her right hand for a total of eight notes being played and
shown in grid-edit field 440. With latch button 404 selected,
the 8 notes remain “in play,” similar to a sustain pedal on a
piano, allowing the user to release the keys and add more
notes if desired. In another non-limiting example, a user can
keep adding notes by depressing one key repeatedly with
latch button 404 selected. For the sake of clarity, many
examples throughout this document may refer to adding
“notes” to an arpeggiator by a user. However, it should be
understood that rests and note ties can be used instead of or in
addition to notes, and that arpeggios may be created by a user,
by automation, or other method that would be appreciated by
one of ordinary skill in the art with the benefit of this disclo-
sure. Furthermore, some embodiments only “grid capture”
performance data, which can include velocity data and/or
note data identifying whether the “note” is a note (has a pitch),
is a rest, or is a chord, as shown in FIG. 21.

Mode selector 406 sets the mode ofthe arpeggiator. Certain
modes may include reset mode, add mode, add temporarily,
transpose, gated transpose, and through mode, among other
possible implementations. In add mode, a user can add addi-
tion notes to an arpeggio in live-mode when latch 404 is
selected. For example, if auser plays three notes (C, E, G) and
releases the input (e.g., keys), the three notes will play an
arpeggio based on the Arc GUI 400 settings (e.g., rate 408,
note order 410, variation 420, etc.). Notes played subsequent
to the first three notes will be “added” to the arpeggio, such
that two additional notes will create a 5-note arpeggio. In reset
mode, after the first three notes are latched and released (e.g.,
user lets go of the keys), the three note arpeggio will play per
Arc GUI 400 settings. When the user plays additional notes,
the arpeggio is “reset” and the first three notes are replaced
with the additional notes. In through mode, after the first three
notes are latched and released, the three note arpeggio will
play per Arc GUI 400 settings. The user can then play addi-
tional notes, such as a melody, to play along with or accom-
pany the repeating arpeggio without affecting the notes of the
arpeggio. These modes (and others) and their use cases would
be understood by one of ordinary skill in the art with the
benefit of this disclosure.

Note order selector 410 can control the melodic trend of the
arpeggio. Up button 412 causes the notes of an underlying
chord to be played in a repeating arpeggiated pattern of
increasing pitch. For example, an A7 chord (A, C#, E, G) may
be played in ascending order such as A, C#, E, G, A C#,E, G.
Down button 413 causes notes of an underlying chord to be
played in a repeating arpeggiated pattern of decreasing pitch.
For example, the A7 chord may be played in a descending
pattern such as A, G, E, C#, A, G, E. Up/down button 414
causes notes of an underlying chord to be played in alternat-
ing increasing and decreasing arpeggiated patterns. For
example, the A7 chord may be played in a pattern such as A,

10

15

20

25

30

35

40

45

50

55

60

65

6

C#,E, G, E, C#, A. In button 415 causes notes of an under-
lying chord to be played as an arpeggio from outside notes
going inward. For example, the A7 chord may be played in a
pattern such as A, G, C#, E, A, G, C#, E. Random button 416
can cause random patterns of the underlying chord to be
played in a randomized fashion (e.g., combinations of
upward, downward, in, outward, or other pattern). Free play
button 417 causes the arpeggiator to play an arpeggio that
matches a pattern played by the user. Any permutation of
controlling the note order in an arpeggio can be implemented
in Arp GUIT 400.

Rate control 408 can control the rate or speed at which a
generated arpeggio is played. For example, the notes of the
generated arpeggio can be set as whole notes, half notes,
quarter notes, eighth notes, sixteenth notes, eighth triplets, or
the like. Arpeggio notes set to whole note values may play the
underlying arpeggio more slowly than an arpeggio comprised
of' sixteenth notes. Any suitable method of controlling the rate
of an arpeggio is possible (e.g., virtual knobs, faders, MIDI
keyboard, etc.), as would be understood by one of ordinary
skill in the art.

Variation control 420 controls the manner in which the
arpeggio for the underlying chord is played. For example, a
first variation pattern may start the arpeggio on a bass note of
the underlying chord. The second variation pattern may start
the arpeggio on the second note of the underlying chord (e.g.,
first inversion). The third variation may start the arpeggio on
the third note of the underlying chords (e.g., second inver-
sion), and so on. Any algorithm for arpeggiating the underly-
ing chord can be associated with variation control 420, as
would be appreciated by one of ordinary skill in the art with
the benefit of this disclosure.

Octave Range selector 422 can control the harmonic range
of'the underlying chord. For example, with an octave range of
one, a generated arpeggio may include notes limited to one
octave range. With an octave range of two, a generated arpeg-
gio may include notes over two octave ranges, and so on. Any
number of octave ranges can be used or assigned to the
arpeggio, as would be appreciated by one of ordinary skill in
the art.

Control tabs 430 controls content displayed in edit field
440. Control tabs 430 includes a tab designated for pattern
control 432, options control 434, keyboard control 436, and
controller options 438. Pattern control 432 allows a user to
control the content of an arpeggio in real-time, grid-editing,
or a combination thereof'in edit field 440. In live mode 442, a
user can input notes, rests, or note ties in real-time, which
appear in note velocity region 450, as further described below.
In grid mode 446, a user can input notes, rests, or note ties in
note velocity region 450 in a step-wise fashion. By pressing
the live-to-grid selector 444, a user can input notes, rests, and
note ties in real-time (e.g., with latch 404 and mode selector
406 set to “add” mode) in live-mode and capture or “freeze”
the live-played arpeggio in note velocity region 450 for play-
back, editing, or real-time editing during playback. This tran-
sition is shown, e.g., in FIG. 6 and FIG. 7, as further addressed
below.

Note position region 460 includes a plurality of positions
(461, 462, 463, . . .) for each note, rest, or note tie in a
live-played or grid-captured arpeggio. Position 1 (461) is the
first note or rest in the arpeggio, followed by position 2 (462),
position 3 (463), and so on. Any number of notes, rests, or
note ties can be included in a live-played or grid-captured
arpeggio.

Note velocity region 450 depicts the velocities of notes
played in the note position region 460 in either live mode 442
or grid mode 446. Notes can vary in velocity and may range

US 9,105,260 B1

7

from O (i.e., a rest) to 127, which is typically a maximum
velocity in MIDI. Although the resolution of the velocity is
shown to have 127 levels, any resolution of velocity (i.e.,
number of velocity levels) can be used.

Arpeggio progress bar 480 shows the progress of a played
arpeggio. For example, as an arpeggio is played (e.g., see FIG.
7), a bar, slider, or other indicator tracks and highlights the
note or rest being played in real-time. For example, progress
bar 480 will highlight each note of an 8-note arpeggio in
positions 1-8 in succession and in real-time to indicate the
current note being played. Any suitable method canbe used to
indicate a current note or rest being played in an arpeggio in
real-time.

Selecting options control 434 populates the edit field with
anumber of controls (see, e.g., FIG. 14) configured to change
aspects of the notes and the way arpeggios are played. For
example, note length control 1410 can control how long each
note of the arpeggio is played. In some embodiments, a ran-
domizer control 1420 can randomize the note length of each
note of the arpeggio by a set amount.

A velocity normalizer 1430 can normalize the velocity of
each note of the arpeggio. For example, normalization may be
set anywhere from zero percent (i.e., default to velocity val-
ues set in pattern control tab 432) to 100 percent (i.e., each
note of the arpeggio is set to a uniform programmable value).
In some cases, the velocity can also be randomized, crescen-
doed (1440), or decrescendoed at any predetermined value
(e.g., crescendo rate, randomization amount, etc.). Any type
of control can be applied to the arpeggio (e.g., swing (1450),
cycle length (1460), etc.) as would be appreciated by one of
ordinary skill in the art with the benefit of this disclosure.

Selecting the keyboard control tab 436 populates edit field
440 with a depiction of a programmable keyboard (see, e.g.,
FIG. 15) that can be well suited for live-playing situations.
The programmable keyboard can be configured to correspond
to a MIDI controller (keyboard). In some settings, a first
portion ofthe keyboard 1520 may be configured to play notes,
rests, note ties, etc., to create an arpeggio. A second portion of
the keyboard may be configured as a remote controller 1510
where certain keys can be mapped to functions of Arp GUI
400. For example, some keys may toggle start/stop button
402, latch 404, note order selection 410, variation control
420, octave range selection 422, or any other function of Arp
GUI 400, allowing a user to more easily edit and/or control
aspects of a live-played arpeggio, e.g., on a single MIDI
controller without taking her hands off of the keys. In some
implementations, notes can be associated with a certain note
rate (e.g., Y& notes, Yis notes, etc.), a certain key (e.g., only
notes in C major are played for diatonic harmony), or a certain
scale (e.g., chromatic keyboard, etc.).

The controller options tab 438 can be configured to edit or
assign controls and/or functions to an external controller
(e.g., MIDI controller). For example, each key of a MIDI
controller can be assigned to any function associated with Arp
GUI 400 (see, e.g., FIG. 16). The embodiments described
herein are depicted to explain certain aspects of grid-editing
live-played arpeggios. Some Arp GUIs may have more func-
tions, while others may have fewer functions, and the follow-
ing examples are not intended to be all inclusive. Many varia-
tions, components, functions, GUI formats, etc., are possible
as would be appreciated by one of ordinary skill in the art with
the benefit of this disclosure.

FIG. 5 is a simplified diagram illustrating aspects of a live
performance on an arpeggiator interface 400, according to
certain embodiments of the invention. Arp GUI 400 is set to
live-mode 442 with start/stop button 402 and latch 404 turned
on, mode selector 406 set to “reset,” and up button 412 is

10

15

20

25

30

35

40

45

50

55

60

65

8

selected. Note position region 460 indicates that a plurality of
4 notes are played in a rhythmic order and latched (held) as
shown in positions 561,562, 563, and 564 of Arp GUI400. In
some embodiments, only the corresponding performance
data (i.e., velocity data, identifiers (note, rest, tie in) are
shown in note position region 460. Each note was played at a
respective velocity (i.e., note characteristic) with the note at
position 561 having a relatively high velocity (e.g., note is
played hard) and the note at position 564 having a very low
velocity (e.g., note is played soft). In this example, an arpeg-
gio of 4 notes (561-564) is repeatedly played back in an
upward melodic trend (up button 412 selected) over a range of
one octave (octave range selector 422) with each note of the
arpeggio playing in %is notes. Since Arp GUI 400 is in “live
mode” (442) with latch 402 enabled, notes 561-564 will
remain in play until the keys are released and a subsequent
note or plurality of notes are played. A subsequent note or
plurality of notes (i.e., arpeggio) will “reset” (i.e., delete) the
notes in note position region 460 and replace them with the
subsequent plurality of notes. For example, a single note
played after the release of notes 561-564 will result in the
single note being shown in position 561 with a corresponding
velocity in region 550.

FIG. 6 is a simplified diagram illustrating aspects of a
latched live performance on an arpeggiator interface, accord-
ing to certain embodiments of the invention. Arp GUI 400 is
set to live-mode 442 with start/stop 402 and latch 404 turned
on, mode selector 406 set to “add,” and up button 412 is
selected. Note position region 460 indicates that a plurality of
16 notes are played in a rhythmic order with their correspond-
ing performance data being latched (held) as shown, in part, at
positions 661, 662, 663, 664 . . . 665, 666 of Arp GUI 400.
Each note was played at a respective velocity (i.e., note char-
acteristic) with the note at position 661 having a relatively
high velocity (e.g., note is played hard) and the note at posi-
tion 665 having a very low velocity (e.g., note is played soft).
In this example, an arpeggio of 16 notes, including notes
661-666, is repeatedly played back in an upward melodic
trend (up button 412 selected) over a range of one octave
(octave range selector 422) with each note of the arpeggio
playing in ¥is notes. Since Arp GUI 400 is in “live mode”
(442), notes 661-666 will remain in play even after the keys
are released. A subsequent note or plurality of notes (i.e.,
arpeggio) will “add” to the total number of notes in the arpeg-
gio. For example, if all notes 661-666 are released and a
subsequent note is played, a 17% note will be added to the
arpeggio. The arpeggio can be deleted or reset, e.g., by tog-
gling start/stop button 402.

FIG. 7 is a simplified diagram illustrating aspects of grid-
captured live performance on an arpeggiator interface,
according to certain embodiments of the invention. More
specifically, FIG. 7 illustrates how aspects of a live-played
arpeggio can be grid-captured for subsequent real-time edit-
ing. As shown, arp GUI 400 is set to grid capture mode 446
with start/stop 402 and latch 404 turned on, mode selector 406
set to “add,” and up button 412 is selected. Note position
region 460 indicates that a plurality of 16 notes are played in
a rhythmic order with their corresponding performance data
being latched (held) as shown in positions 761, 762, 763, 764,
765 of Arp GUI 400. Each note was played at a respective
velocity (i.e., note characteristic) with the note at position 761
having a relatively high velocity (e.g., note is played very
hard) and the note at position 764 having moderately high
velocity (e.g., note is played moderately hard). In this
example, a live-played arpeggio of 16 notes that include notes
761-765 is “grid captured” when grid-capture button 444 is
selected. In the grid-capture mode, the arpeggio is repeatedly

US 9,105,260 B1

9

played back in an upward melodic trend (up button 412
selected) over a range of one octave (octave range selector
422) with each note of the arpeggio playing in “is notes. Since
Arp GUI 400 is in “grid-capture” (446), the 16 arpeggiated
notes will remain in play even after the keys are released.
Subsequent note(s) (e.g., a second plurality of notes) will not
affect the arpeggio notes or corresponding performance data,
as they have been “grid captured.” Rather, the second plural-
ity of notes will be played as an arpeggio defined by the grid
captured data, i.e., the placement and rhythmic order of the
first set of notes and their corresponding performance data.
For instance, in the configuration shown in FIG. 7, once the
performance data is grid-captured, playing a subsequent triad
of notes at maximum velocity (e.g., 127) causes the arpeg-
giator to play the triad as a repeating pattern of 1™ notes
played in an upward melodic trend over one octave and one
pattern, with each note corresponding to the performance data
(e.g., velocity data) applied to the 16 notes of the grid-capture
arpeggio pattern. In some embodiments, the grid-captured
arpeggio can be deleted or reset by toggling start/stop button
402 and/or returning to the live-mode.

FIG. 8 is a simplified diagram illustrating aspects of grid-
editing a live captured arpeggio on an arpeggiator interface,
according to certain embodiments of the invention. More
specifically, FIG. 8 illustrates how a velocity of a note (i.e.,
performance data) can be edited in a grid-edit mode of opera-
tion. As shown, arp GUI 400 is set to grid-capture mode 446
with start/stop 402 and latch 404 turned on, mode selector 406
set to “add,” and up button 412 is selected. Note position
region 460 indicates that a plurality of 16 notes are played in
a rhythmic order with their corresponding performance data
being latched (held) as shown in positions 761, 762, 763, 764,
765 of FIG. 7. In this example, a live-played arpeggio of 16
notes that include note 765 have been “grid captured” as
described above. In the grid-capture mode, subsequent note
(s) (e.g., a second plurality of notes) will not affect the arpeg-
gio notes (i.e., the first plurality of notes) or corresponding
performance data, as they are “locked in.”” In the grid-capture
mode, each note along note position region 460 can be edited,
added, or deleted. As shown in FIG. 8, the velocity of note 765
is reduced from a high velocity value (shown in FIG. 7), so a
lower velocity value, which may cause the note to sound
softer (e.g., lower volume, different tonal characteristics,
etc.). In certain embodiments, editing can be performed in
real-time. Notes can be changed to rests or ties, velocities can
be adjusted, etc., in real-time, while the arpeggio pattern is
playing. For example, if a user wants a C major chord arpeg-
gio to crescendo from soft to loud, as applied to the control
settings of FIG. 8 (e.g., latch 404, mode selector 406, up
button 412, etc.), the user can play the notes of C major,
causing a repeating arpeggio pattern using the notes C-E-G,
and subsequently set the velocity at position 1 (761) to a very
low value and progressively increase the velocity of each note
thereafter to create a “ramp” of increasing velocity. In some
embodiments, editing can be user controlled and/or auto-
mated. Furthermore, crescendos can be automated, e.g., by
using the crescendo control 1440 shown in FIG. 14.

FIG. 9 is a simplified diagram illustrating aspects of grid-
editing a live captured arpeggio on an arpeggiator interface,
according to certain embodiments of the invention. More
specifically, FIG. 9 illustrates how rests can be added in the
grid-edit mode of operation. As shown, arp GUI 400 is set to
grid-capture mode 446 with start/stop 402 and latch 404
turned on, mode selector 406 set to “add,” and up button 412
is selected. Note position region 460 indicates that a plurality
of 16 notes are played in a rhythmic order with their corre-
sponding performance data being latched (held), similar to

10

15

20

25

30

35

40

45

50

55

60

65

10

the notes shown in positions 761, 762, 763, 764, 765 of F1G.
7. In this example, a live-played arpeggio spanning 16 notes
is played and includes changes (e.g., real-time edits) to notes
961, 962, 963, 964, and 965 (i.e., their corresponding perfor-
mance data), which have been converted to “rests.” As
described above, rests have a velocity of zero. In some
embodiments, rests can be created by reducing a velocity of a
note to zero, by toggling the note position indicator under the
target note (e.g., position “6” corresponds to note 961), or
other suitable method that would be appreciated by one of
ordinary skill in the art with the benefit of this disclosure. In
some implementations, editing can be user controlled and/or
automated in real-time or passively. Editing can be performed
using controls on ArpGUI 400, controls on external control-
lers, such as MIDI keyboards with assignable knobs/control-
lers configured to edit the various notes, performance data,
etc., and the like.

FIG. 10 is a simplified diagram illustrating aspects of grid-
editing a live captured arpeggio on an arpeggiator interface,
according to certain embodiments of the invention. More
specifically, FIG. 10 illustrates how a note tie can be added in
the grid-edit mode of operation. Note position region 460
shows that a plurality of 16 notes/rests/ties are “grid-cap-
tured” and played in a rhythmic order. In some embodiments,
a note tie can be created by combining two or more adjacent
notes on note position region 460. For example, positions 18
and 19 of note position region 460 include two adjacent notes
that are converted to a single note tied together (note tie 1081)
such that the note played at position 18 remains in play (i.e.,
sustained) until the end of position 19. A note tie can span any
number of notes. In some embodiments, performance data
may be altered for a set of tied notes. For example, a note tie
combining three notes may be edited such that the initial note
either crescendos or fades out based on a certain decay char-
acteristic. Any desired effect (e.g., echo, delay, distortion,
chorus, tone filters, phaser, etc.) can be incorporated in any of
the embodiments described within and would be appreciated
by one of ordinary skill in the art.

FIG. 11 is a simplified diagram illustrating aspects of a
latched live performance on an arpeggiator interface, accord-
ing to certain embodiments of the invention. More specifi-
cally, FIG. 11 illustrates how notes, rests, and note ties can
also be implemented during live mode using, e.g., a MIDI
keyboard controller with buttons and/or controls configured
to enter rests or sustain notes via note ties in real-time. As
shown, arp GUI 400 is set to live-mode 442 with start/stop
402 and latch 404 turned on, mode selector 406 set to “add,”
and up button 412 is selected. Note position region 460 indi-
cates that a four notes and two rests are played in a particular
rhythmic order with their corresponding performance data
being latched (held) in positions 1161-1168. In the add mode
with latch 402 selected, the plurality of notes and rests can be
added all at once, one at a time, or a combination there
between. For example, notes 1161 and 1162 (Vis™ notes) may
initially be played and latched, followed by 2 16 note rests
1163, 1164 (e.g., entered by a dedicated key on a MIDI
keyboard), and ending with two % notes formed by tying the
combination of note 1165 and 1166, and notes 1167 and 1168.
Asdiscussed above, additional notes, rests, or note ties will be
added to the arpeggio starting at position 9 of note position
region 460. The arpeggio can be deleted or reset, e.g., by
toggling start/stop button 402.

FIG. 12 is a simplified diagram illustrating aspects of grid-
editing a live captured arpeggio on an arpeggiator interface,
according to certain embodiments of the invention. More
specifically, FIG. 12 illustrates how certain notes can changed
to include chord “stabs,” such that two or more notes of a

US 9,105,260 B1

11

played chord are played at the same time for that particular
note position. As shown, arp GUI 400 is set to grid-capture
mode 446 with start/stop 402 and latch 404 turned on, mode
selector 406 set to “reset,” and up button 412 is selected. Note
position region 460 indicates that a plurality of notes, rests,
and note ties are played in a rhythmic order with their corre-
sponding performance data being latched (held), including
notes 1261, 1262, 1263, 1264, 1265 and 1266. In this
example, a grid-captured arpeggio is played with notes 1261
and 1262 forming a sustained 4" note over positions 3 and 4
of'note position region 460 with chord symbols shown under-
neath. In certain implementations, the sustained note 1261/
1262 will sound all of the notes of the arpeggio, or a plural
subset thereof, instead of a single note that would typically be
played. Note 1266 is also configured to play a chord “stab” as
indicated by the chord symbol underneath position 11 of note
position region 460.

FIG. 13 is a simplified diagram illustrating aspects of grid-
editing a live captured arpeggio on an arpeggiator interface,
according to certain embodiments of the invention. More
specifically, FIG. 13 illustrates how notes can be deleted from
an arpeggio in real-time. As shown, arp GUI 400 is set to
grid-capture mode 446 with start/stop 402 and latch 404
turned on, mode selector 406 set to “reset,” and up button 412
is selected. Note position region 460 indicates that a plurality
of notes, rests, and note ties are played in a rhythmic order
with their corresponding performance data being latched
(held), including notes 1361, 1362, 1363, 1364, and 1365,
spanning 16 positions over note position region 460. Once the
arpeggio is grid-captured, notes can be added or deleted to
preference. In FIG. 13, notes 1361-1365 are deselected and
are not played during playback of the arpeggio. That is, the
notes, rests, and ties corresponding to positions 1-11 of note
position region 460 are repeated, while notes 1361-1365 (po-
sitions 12-16) are skipped. Some or all of the notes 1361-1365
can be added back into the played arpeggio, they can be edited
(e.g., change performance data), or additional notes, rests, or
note ties can be added in any desired configuration.

FIG. 14 is a simplified diagram illustrating aspects of an
options control menu 1400 on an arpeggiator interface,
according to certain embodiments of the invention. By select-
ing options control menu 1400, the edit field is populated with
anumber of controls configured to change aspects of the notes
and the way arpeggios are played. Options control tab 1400
can include a note length control 1410, a randomizer 1420, a
velocity control 1430, a crescendo controller 1440, a swing
control 1450, and a cycle length controller 1460, among other
features. In some embodiments, note length control 1410 can
control how long each individual note and/or rest of the arpeg-
gio is played. For example, increasing the note length causes
notes to play longer such that very short moments of silence
are heard between adjacent notes on note position region 460.
Conversely, decreasing the note length causes notes to play
for shorter durations, which may sound more “choppy” or
staccato. Randomizer 1420 causes the note length to vary
according to a random pattern. Increasing or decreasing the
randomization can affect the rate of randomization, the range
of randomization, and the like.

Velocity control 1430 controls the overall velocity of the
arpeggio. In some embodiments, as the velocity is increased,
the velocity deviates progressively less from the velocities set
in the pattern mode (e.g., 432). As the velocity is decreased,
the velocity values for all of the notes in the arpeggio become
more uniform and fixed. Crescendo controller 1440 causes
the velocities of the arpeggio crescendo at a rate and range
dictated by the setting. Increasing crescendo (e.g., increasing
positive values) can cause the velocities of the notes to

10

15

20

25

30

35

40

45

50

55

60

65

12

increase at a faster rate and/or an increasing range. Reducing
crescendo (decreasing negative values) can cause the veloci-
ties of the notes to decrease at an increasing rate and/or an
increasing range. In some embodiments, a randomizer con-
trol can be applied to the velocity control 1430, as would be
appreciated by one of ordinary skill in the art with the benefit
of this disclosure.

Swing control 1450 can control an amount of swing to add
to the playback of the arpeggio. Cycle length controller 1460
can control how the arpeggio is played and can range from “as
played” to the cycle defined in the grid.

FIG. 15 is a simplified diagram illustrating aspects of a
keyboard control menu 1500 on an arpeggiator interface,
according to certain embodiments of the invention. By select-
ing keyboard control menu 1500, the edit field is populated
with an image of a keyboard that can be well-suited for
live-playing. Keyboard control menu can include input snap
control 1510, a remote controller setup button 1550, a key-
board split controller 1540, and a keyboard 1505 that can be
split into a remote control section 1520 and an arpeggio
section 1530. Input Snap control 1510 can link or snap notes
(i.e., notes, rests, tied notes) to a rate (e.g., whole note, half
note, etc.), a key (C major, D minor), or a scale (e.g., B dim,
chromatic, F major). For instance, if input snap control 1510
is set to snap notes to a C major scale, then any set of notes
played in an arpeggio (e.g., on arpeggio section 1530) will
automatically snap to a note in the C major scale if the par-
ticular note is not part of that scale (e.g., C# snaps to C or D).
Remote section 1520 of keyboard 1505 can be configured to
map keyboard keys to specific functions for quick access
during live-playing sessions. For example, keys can be
mapped to toggle latch control 402, select a mode of opera-
tion (e.g., add, reset, etc.), octave range, variation, note order,
changing performance data (e.g., change a note to a rest),
options menu controls, or any of the controls described herein
in any desired format. The actual key map can be viewed by
selecting remote controller setup button 1550 and the key-
board split can be toggled with keyboard split controller
1540. Typically, the virtual keyboard 1505 shown in the key-
board section is controlled by an external MIDI controller,
however other control configurations may be used.

FIG. 16 is a simplified diagram illustrating aspects of a
controller options menu 1600 on an arpeggiator interface,
according to certain embodiments of the invention. By select-
ing controller options menu 1600, the edit field is populated
with an image of various edit fields configured to edit or
assign controls and/or functions to an external controller
(e.g., MIDI controller). For example, each key of a MIDI
controller can be assigned to any function associated with Arp
GUI400. Controller options menu 1600 can be used to assign
the various keys of a MIDI controller to certain functions, as
displayed in the keyboard control menu 1500. It should be
understood that the embodiments described herein are
depicted to explain certain aspects of grid-editing live-played
arpeggios. Some Arp GUIs may have more or fewer func-
tions, as the examples provided are not intended to be all
inclusive. Many variations, components, functions, GUI for-
mats, etc., are possible as would be appreciated by one of
ordinary skill in the art with the benefit of this disclosure.

FIG. 17 is a simplified flow diagram illustrating aspects of
a method 1700 of grid editing a live played arpeggio, accord-
ing to an embodiment of the invention. Method 1700 can be
performed by processing logic that may comprise hardware
(e.g., circuitry, dedicate logic, etc.), software (which as is run
on a general purpose computing system or a dedicated
machine), firmware (embedded software), or any combina-

US 9,105,260 B1

13

tion thereof. In one embodiment, method 1700 is performed
by aspects of system 1800 of FIG. 18 including processing
unit 1810.

At 1710, method 1700 begins with receiving a first perfor-
mance data corresponding to a first plurality of notes in a first
order. The first plurality of notes can be MIDI-based notes and
may form an arpeggio, according to an embodiment of the
invention. The first performance data can originate from an
external MIDI keyboard, a virtual keyboard, or may be auto-
mated and/or previously generated, or can come from any
other source as would be appreciated by one of ordinary skill
in the art. The performance data can correspond to any num-
ber of notes and does not necessarily have to be more than one
note. Furthermore, the corresponding first plurality of notes
can be “live-played” in real time. For instance, a musician
may play the notes in real time, or the notes may be received
in real time from a database. The performance data can
include velocity data and/or an identifier indicating whether a
corresponding note is one of a musical note, a rest, or a
note-tie. Performance data can further include the timing of
the rhythmic order that the performance data was received
(e.g., notes played).

At 1720, the first performance data is “grid-captured”, i.e.,
arranged in a graphical grid pattern in the order that they were
received. In some embodiments, grid-capturing can occur
when the corresponding notes (e.g., arpeggio) played in “live-
mode” 444 are captured in grid-mode 446, which may occur
when grid capture button 444 is selected (e.g., directly or
through an external MIDI controller). In one non-limiting
example, grid-capturing performance data corresponding to
an arpeggio is shown and described in the transition between
FIGS. 6 and 7. Capturing performance data can include sav-
ing performance data in a database for subsequent access and
retrieval. In some embodiments, note data (e.g., pitch data)
can also be captured, saved, and manipulated similar to the
performance data in the other embodiments described herein.

At 1730, method 1700 continues with receiving input data
indicating a change to performance data that corresponds to
one or more notes of the first plurality of notes. Input data can
include data corresponding to changes in velocity data for a
particular note of the first plurality of notes. Input data can
include data corresponding to changes in a note identifier
from a musical note to a rest or tying one note to another note.
At 1740, the performance data is changed as dictated by the
input data. Some non-limiting examples of changing perfor-
mance data to one or more notes of the first plurality of notes
are shown and described in FIGS. 8-10 and FIG. 12-13. In
certain embodiments, the performance data and/or changed
performance data can be stored in a database (e.g., database
1825 of system 1800 of FIG. 18).

At 1750, method 1700 continues with receiving second
performance data corresponding to a second plurality of notes
in a second order. The second plurality of notes can be MIDI-
based notes and may form an arpeggio, according to an
embodiment of the invention. The corresponding second plu-
rality of notes can originate from an external MIDI keyboard,
a virtual keyboard, or may be automated and/or previously
generated, or can come from other input source as would be
appreciated by one of ordinary skill in the art. The second
performance data can correspond to any number of notes and
does not necessarily have to be more than one note. Further-
more, the corresponding first plurality of notes can be “live-
played” in real time. For instance, a musician may play the
notes in real time, or the notes may be received in real time
from a database. The second performance data can include
velocity data and/or an identifier indicating whether a corre-
sponding note is one of a musical note, a rest, or a note-tie.

25

40

45

50

14

Performance data can further include the timing of the rhyth-
mic order that the performance data was received (e.g., notes
played).

At 1760, method 1700 concludes with applying the
changes made to the first performance data to the second
performance data. For example, referring back to FIG. 7, the
grid captured first performance data shown in edit field 440
includes data (e.g., velocity data) corresponding to 16 notes
grid-captured and configured to be played repeatedly in an
upward melodic trend over a range of one octave with each
note of the corresponding arpeggio playing ¥i6” notes. The
corresponding second plurality of notes are played as defined
by the first performance data of the grid, not the second
performance data associated with how the second arpeggio is
physically played. For instance, in the configuration shown in
FIG. 7, once the performance data is grid-captured, playing a
subsequent triad of notes at maximum velocity (e.g., 127)
causes the arpeggiator to play the triad as a repeating pattern
of Yi6™ notes in an upward melodic trend over one octave and
one pattern, with each note having velocity data that corre-
sponds to the velocity data associated with the particular
grid-captured note (i.e., the edited performance data of the
first plurality of notes), not the velocity that the subsequent
note was played. Applying the changes made to the first
performance data to the second performance data can
executed in real-time.

It should be appreciated that the specific steps illustrated in
FIG. 17 provides a particular method of grid editing a live
played arpeggio, according to an embodiment of the present
invention. Other sequences of steps may also be performed
according to alternative embodiments. In certain embodi-
ments, method 1700 may perform the individual steps in a
different order, at the same time, or any other sequence for a
particular application. Moreover, the individual steps illus-
trated in FIG. 17 may include multiple sub-steps that may be
performed in various sequences as appropriate to the indi-
vidual step. Furthermore, additional steps may be added or
removed depending on the particular applications. One of
ordinary skill in the art would recognize and appreciate many
variations, modifications, and alternatives of the method.

FIG. 21 is a high level flow diagram illustrating aspects of
a system 2100 for operating an arpeggiator, according to
certain embodiments of the invention. Many of the grid edit-
ing aspects described herein are contained in method steps
2160, 2170, 2172, 2174, and 2176. However, it would be
understood by one of ordinary skill in the art with the benefit
of this disclosure that there are many ways to implement
arpeggiator systems using the grid editing techniques
described in herein.

In some implementations, system 2100 is configured to
receive MIDI inputs 2104 (e.g., from a keyboard or other
MIDI instrument) or from a user interface 2102. At 2110, the
MIDI note message is deconstructed. For example, a MIDI
note includes pitch information, velocity data, note type data
(e.g., rest, tie, note, chord, etc.), and the like. The pitch data is
analyzed (step 2120), the note order is processed (2130), and
a MIDI message is assembled (2140). MIDI message assem-
bly can include the note number (e.g., pitch), whether the note
is on or off, etc. MIDI message assembly can further include
velocity, which is further discussed below. The MIDI note
message is finally output at MIDI output 2150.

Referring back to the MIDI note message deconstruction
(2110), various performance data from the MIDI input is
allocated to arpeggiator steps and memory (2160). Perfor-
mance data can include MIDI velocity data, note data (e.g., is
the note an actual note, a rest, or a chord), or other perfor-
mance data, as would be appreciated by one of ordinary skill

US 9,105,260 B1

15

in the art. At 2170, the performance data is either live-played
2172 (i.e., not captured) or captured in a step grid 2174. The
step grid can be edited by a user 2176, automated, or a com-
bination thereof. The performance data (grid edited or live
played) is passed to a note and velocity processing block
2180. The note and velocity processing block 2180 can deter-
mines whether the corresponding note will be played based
on a note on/oft generation block 2190 and corresponding
rate input 2192, as well as the user edits of block 2182, which
may correspond to the user edits of block 2176. Block 2180
further processes velocity data (i.e., performance data)
received from the grid editing section. The output of block
2180 is fed to MIDI message assembly block 2140, as further
discussed above.

System Architecture

FIG. 18 illustrates an example of a system 1800 that can
enable a user to grid edit a live played arpeggio, according to
an embodiment of the invention. System 1800 can be a device
that can include multiple subsystems such as a display sub-
system 1805, one or more processors or processing units
1810, a storage subsystem 1815, and a communications sys-
tem 1860. One or more communication paths can be provided
to enable one or more of the subsystems to communicate with
and exchange data with one another. The various subsystems
in FIG. 18 can be implemented in software, hardware, firm-
ware, or combinations thereof. In some embodiments, the
software can be stored on a transitory or non-transitory com-
puter readable storage medium and can be executed by one or
more processing units. In certain embodiments, storage sub-
system 1815 comprises one or more memories for storing the
data used or generated by certain embodiments of the present
invention and for storing software (e.g., code, computer
instructions) that may be executed by one or more processing
units 1810.

It should be appreciated that system 1800 as shown in FIG.
18 can include more or fewer components than those shown in
FIG. 18, can combine two or more components, or can have a
different configuration or arrangement of components. In
some embodiments, system 1800 can be a part of a portable
computing device, such as a tablet computer, a mobile tele-
phone, a smart phone, a desktop computer, a laptop computer,
a kiosk, etc. The system 1800 can operate on an iPhone®,
iPad®, iMac®, or the like.

In some embodiments, display subsystem 1805 can pro-
vide an interface that allows a user to interact with system
1800. The display subsystem 1805 may be a cathode ray tube
(CRT), a flat-panel device such as a liquid crystal display
(LCD), a projection device, a touch screen, or the like. In
general, use of the term “output device” is intended to include
all possible types of devices and mechanisms for outputting
information from system 1800. For example, a software key-
board may be displayed using a flat-panel screen. In some
embodiments, the display subsystem 1805 can be a touch
interface, where the display provides both an interface for
outputting information to a user of the device and also as an
interface for receiving inputs. In other embodiments, there
may be separate input and output subsystems. Through the
display subsystem 1805, the user can view and interact with a
GUI (Graphical User Interface) 1820 of a system 1800. In
some embodiments, display subsystem 1805 can include a
touch-sensitive interface (also sometimes referred to as a
touch screen) that can both display information to the user and
receive inputs from the user. Processing unit(s) 1810 can
include one or more processors, each having one or more
cores. In some embodiments, processing unit(s) 1810 can
execute instructions stored in storage subsystem 1815. Sys-
tem 1800 can further include an audio system to play music

5

10

15

20

25

30

35

40

45

50

55

60

16

(e.g., accompaniments, musical performances, etc.) through
one or more audio speakers (not shown).

Communications system 1860 can include various hard-
ware, firmware, and software components to enable elec-
tronic communication between multiple computing devices.
Communications system 1860 or components thereof can
communicate with other devices via Wi-Fi, Bluetooth, infra-
red, or any other suitable communications protocol that can
provide sufficiently fast and reliable data rates to support the
real-time jam session functionality described herein.

Storage subsystem 1815 can include various memory units
such as a system memory 1830, a read-only memory (ROM)
1840, and a non-volatile storage device 1850. The system
memory can be a read-and-write memory device or a volatile
read-and-write memory, such as dynamic random access
memory. System memory 1830 can store some or all of the
instructions and data that the processor(s) or processing unit
(s) need at runtime. ROM 1840 can store static data and
instructions that are used by processing unit(s) 1810 and other
modules of system 1800. Non-volatile storage device 1850
can be a read-and-write capable memory device. Embodi-
ments of the invention can use a mass-storage device (such as
a magnetic or optical disk or flash memory) as a permanent
storage device. Other embodiments can use a removable stor-
age device (e.g., a floppy disk, a flash drive) as a non-volatile
(e.g., permanent) storage device.

Storage subsystem 1815 can store MIDI (Musical Instru-
ment Digital Interface) data relating to notes played on a
virtual instrument of system 1800 in MIDI database 1832. A
performance data database 1834 can store performance data
including velocity data, note identifier data (e.g., note, rest,
notetie), rhythmic data, and the like). Further detail regarding
system architecture and the auxiliary components thereof
(e.g., input/output controllers, memory controllers, etc.) are
not discussed in detail so as not to obfuscate the focus on the
invention and would be understood by those of ordinary skill
in the art.

FIG. 19 illustrates a computer system 1900 according to an
embodiment of the present invention. The user interfaces
described herein (e.g., user input block 130) can be imple-
mented within a computer system such as computer system
1900 shown here. Computer system 1900 can be imple-
mented as any of various computing devices, including, e.g.,
a desktop or laptop computer, tablet computer, smart phone,
personal data assistant (PDA), or any other type of computing
device, not limited to any particular form factor. Computer
system 1900 can include processing unit(s) 1905, storage
subsystem 1910, input devices 1920, output devices 1925,
network interface 1935, and bus 1940. In some embodiments,
system 1900 can be operated in within the framework of
Garageband® or Logic®, developed by Apple Computer®.

Processing unit(s) 1905 can include a single processor,
which can have one or more cores, or multiple processors. In
some embodiments, processing unit(s) 1905 can include a
general purpose primary processor as well as one or more
special purpose co-processors such as graphics processors,
digital signal processors, or the like. In some embodiments,
some or all processing units 1905 can be implemented using
customized circuits, such as application specific integrated
circuits (ASICs) or field programmable gate arrays (FPGAs).
In some embodiments, such integrated circuits execute
instructions that are stored on the circuit itself. In other
embodiments, processing unit(s) 1905 can execute instruc-
tions stored in storage subsystem 1910.

Storage subsystem 1910 can include various memory units
such as a system memory, a read-only memory (ROM), and a
permanent storage device. The ROM can store static data and

US 9,105,260 B1

17

instructions that are needed by processing unit(s) 1905 and
other modules of electronic device 1900. The permanent stor-
age device can be a read-and-write memory device. This
permanent storage device can be a non-volatile memory unit
that stores instructions and data even when computer system
1900 is powered down. Some embodiments of the invention
can use a mass-storage device (such as a magnetic or optical
disk or flash memory) as a permanent storage device. Other
embodiments can use a removable storage device (e.g., a
floppy disk, a flash drive) as a permanent storage device. The
system memory can be a read-and-write memory device or a
volatile read-and-write memory, such as dynamic random
access memory. The system memory can store some or all of
the instructions and data that the processor needs at runtime.

Storage subsystem 1910 can include any combination of
computer readable storage media including semiconductor
memory chips of various types (DRAM, SRAM, SDRAM,
flash memory, programmable read-only memory) and so on.
Magnetic and/or optical disks can also be used. In some
embodiments, storage subsystem 1910 can include remov-
able storage media that can be readable and/or writeable;
examples of such media include compact disc (CD), read-
only digital versatile disc (e.g., DVD-ROM, dual-layer DVD-
ROM), read-only and recordable Blue-Ray® disks, ultra den-
sity optical disks, flash memory cards (e.g., SD cards, mini-
SD cards, micro-SD cards, etc.), magnetic “floppy” disks, and
so on. The computer readable storage media do not include
carrier waves and transitory electronic signals passing wire-
lessly or over wired connections.

In some embodiments, storage subsystem 1910 can store
one or more software programs to be executed by processing
unit(s) 1905, such as a user interface 1915. As mentioned,
“software” can refer to sequences of instructions that, when
executed by processing unit(s) 1905 cause computer system
1900 to perform various operations, thus defining one or more
specific machine implementations that execute and perform
the operations of the software programs. The instructions can
be stored as firmware residing in read-only memory and/or
applications stored in magnetic storage that can be read into
memory for processing by a processor. Software can be
implemented as a single program or a collection of separate
programs or program modules that interact as desired. Pro-
grams and/or data can be stored in non-volatile storage and
copied in whole or in part to volatile working memory during
program execution. From storage subsystem 1910, process-
ing unit(s) 1905 can retrieve program instructions to execute
and data to process in order to execute various operations
described herein.

A user interface can be provided by one or more user input
devices 1920, display device 1925, and/or and one or more
other user output devices (not shown). Input devices 1920 can
include any device via which a user can provide signals to
computing system 1900; computing system 1900 can inter-
pret the signals as indicative of particular user requests or
information. In various embodiments, input devices 1920 can
include any or all of a keyboard touch pad, touch screen,
mouse or other pointing device, scroll wheel, click wheel,
dial, button, switch, keypad, microphone, and so on.

Output devices 1925 can display images generated by elec-
tronic device 1900. Output devices 1925 can include various
image generation technologies, e.g., a cathode ray tube
(CRT), liquid crystal display (LCD), light-emitting diode
(LED) including organic light-emitting diodes (OLED), pro-
jection system, or the like, together with supporting electron-
ics (e.g., digital-to-analog or analog-to-digital converters,
signal processors, or the like), indicator lights, speakers, tac-
tile “display” devices, headphone jacks, printers, and so on.

10

20

25

30

35

40

45

50

55

60

65

18

Some embodiments can include a device such as a touch-
screen that function as both input and output device.

In some embodiments, output device 1925 can provide a
graphical user interface, in which visible image elements in
certain areas of output device 1925 are defined as active
elements or control elements that the user selects using user
input devices 1920. For example, the user can manipulate a
user input device to position an on-screen cursor or pointer
over the control element, then click a button to indicate the
selection. Alternatively, the user can touch the control ele-
ment (e.g., with a finger or stylus) on a touchscreen device. In
some embodiments, the user can speak one or more words
associated with the control element (the word can be, e.g., a
label on the element or a function associated with the ele-
ment). In some embodiments, user gestures on a touch-sen-
sitive device can be recognized and interpreted as input com-
mands; these gestures can be but need not be associated with
any particular array in output device 1925. Other user inter-
faces can also be implemented.

Network interface 1935 can provide voice and/or data
communication capability for electronic device 1900. In
some embodiments, network interface 1935 can include radio
frequency (RF) transceiver components for accessing wire-
less voice and/or data networks (e.g., using cellular telephone
technology, advanced data network technology such as 3G,
4G or EDGE, WiFi (IEEE 802.11 family standards, or other
mobile communication technologies, or any combination
thereof), GPS receiver components, and/or other compo-
nents. In some embodiments, network interface 1935 can
provide wired network connectivity (e.g., Ethernet) in addi-
tion to or instead of a wireless interface. Network interface
1935 can be implemented using a combination of hardware
(e.g., antennas, modulators/demodulators, encoders/decod-
ers, and other analog and/or digital signal processing circuits)
and software components.

Bus 1940 can include various system, peripheral, and
chipset buses that communicatively connect the numerous
internal devices of electronic device 1900. For example, bus
1940 can communicatively couple processing unit(s) 1905
with storage subsystem 1910. Bus 1940 also connects to input
devices 1920 and display 1925. Bus 1940 also couples elec-
tronic device 1900 to a network through network interface
1935. In this manner, electronic device 1900 can be a part of
a network of multiple computer systems (e.g., a local area
network (LAN), a wide area network (WAN), an Intranet, or
a network of networks, such as the Internet. Any or all com-
ponents of electronic device 1900 can be used in conjunction
with the invention.

Some embodiments include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a computer readable storage medium.
Many of the features described in this specification can be
implemented as processes that are specified as a set of pro-
gram instructions encoded on a computer readable storage
medium. When these program instructions are executed by
one or more processing units, they cause the processing unit
(s) to perform various operation indicated in the program
instructions. Examples of program instructions or computer
code include machine code, such as is produced by a com-
piler, and files including higher-level code that are executed
by a computer, an electronic component, or a microprocessor
using an interpreter.

It will be appreciated that computer system 1900 is illus-
trative and that variations and modifications are possible.
Computer system 1900 can have other capabilities not spe-
cifically described here (e.g., mobile phone, global position-
ing system (GPS), power management, one or more cameras,

US 9,105,260 B1

19

various connection ports for connecting external devices or
accessories, etc.). Further, while computer system 1900 is
described with reference to particular blocks, it is to be under-
stood that these blocks are defined for convenience of
description and are not intended to imply a particular physical
arrangement of component parts. Further, the blocks need not
correspond to physically distinct components. Blocks can be
configured to perform various operations, e.g., by program-
ming a processor or providing appropriate control circuitry,
and various blocks might or might not be reconfigurable
depending on how the initial configuration is obtained.
Embodiments of the present invention can be realized in a
variety of apparatus including electronic devices imple-
mented using any combination of circuitry and software.

While the invention has been described with respect to
specific embodiments, one skilled in the art will recognize
that numerous modifications are possible including the dis-
played representation of the user interface 130 and the con-
figuration of the various elements therein, such as their posi-
tion, organization, and function, filtering rules and analysis,
etc. Thus, although the invention has been described with
respect to specific embodiments, it will be appreciated that
the invention is intended to cover all modifications and
equivalents within the scope of the following claims.

FIG. 20 depicts a simplified diagram of a distributed sys-
tem 2000 for providing a system and method for generating a
rhythmic accompaniment according to some embodiments,
according to an embodiment of the invention. In the embodi-
ment depicted in FIG. 20, system 1800 is provided on a server
2004 that is communicatively coupled with a remote client
device 2002 via network 2006. Server 2004 may include one
or more web servers 2008, application servers 2010, or a
combination thereof, or any suitable server based infrastruc-
ture.

Network 2006 may include one or more communication
networks, which could be the Internet, a local area network
(LAN), a wide area network (WAN), a wireless or wired
network, an Intranet, a private network, a public network, a
switched network, or any other suitable communication net-
work. Network 2006 may include many interconnected sys-
tems and communication links including but not restricted to
hardwire links, optical links, satellite or other wireless com-
munications links, wave propagation links, or any other ways
for communication of information. Various communication
protocols may be used to facilitate communication of infor-
mation via network 2006, including but not restricted to TCP/
1P, HTTP protocols, extensible markup language (XML),
wireless application protocol (WAP), protocols under devel-
opment by industry standard organizations, vendor-specific
protocols, customized protocols, and others. In the configu-
ration depicted in FIG. 20, aspects of system 1800 may be
displayed by client device 2002.

In the configuration depicted in FIG. 20, system 1800 is
remotely located from client device 2002. In some embodi-
ments, server 2004 may operate the arpeggiator functions
described herein. In some embodiments, the services pro-
vided by server 2004 may be offered as web-based or cloud
services or under a Software as a Service (SaaS) model.

It should be appreciated that various different distributed
system configurations are possible, which may be different
from distributed system 2000 depicted in FIG. 20. The
embodiment shown in FIG. 20 is thus only one example of
system for grid editing a live played arpeggio and is not
intended to be limiting.

While the invention has been described with respect to
specific embodiments, one skilled in the art will recognize
that numerous modifications are possible. Thus, although the

10

15

20

25

30

35

40

45

50

55

60

65

20

invention has been described with respect to specific embodi-
ments, it will be appreciated that the invention is intended to
cover all modifications and equivalents within the scope of
the following claims.

The above disclosure provides examples and aspects relat-
ing to various embodiments within the scope of claims,
appended hereto or later added in accordance with applicable
law. However, these examples are not limiting as to how any
disclosed aspect may be implemented,

All the features disclosed in this specification (including
any accompanying claims, abstract, and drawings) can be
replaced by alternative features serving the same, equivalent
or similar purpose, unless expressly stated otherwise. Thus,
unless expressly stated otherwise, each feature disclosed is
one example only of a generic series of equivalent or similar
features.

Any element in a claim that does not explicitly state
“means for” performing a specified function, or “step for”
performing a specific function, is not to be interpreted as a
“means” or “step” clause as specified in 35 U.S.C. §112, sixth
paragraph. In particular, the use of “step of” in the claims
herein is not intended to invoke the provisions of 35 U.S.C.
§112, sixth paragraph.

What is claimed is:

1. A computer-implemented method comprising:

receiving, on a computing device, a first set of performance

data corresponding to a first plurality of MIDI-based
notes, wherein the first set of performance data is
received in a first order;

receiving input data requesting a change to the first set of

performance data;

changing the first set of performance data based on the

input data;

receiving a second set of performance data corresponding

to a second plurality of MIDI-based notes, wherein the
second set of performance data is received in a second
order; and

applying the changes made to the first set of performance

data to the second set of performance data in real-time.

2. The computer-implemented method of claim 1 further
comprising:

storing the changed first set of performance data in a data-

base; and

retrieving the changed first set of performance data from

the database prior to applying the changed first set of
performance data to the second set of performance data.

3. The computer-implemented method of claim 1 further
comprising arranging the first set of performance data in a
graphical grid pattern in the order received.

4. The computer-implemented method of claim 1 wherein
the first set of performance data includes a note velocity.

5. The computer-implemented method of claim 1 wherein
the first set of performance data includes an identifier indi-
cating whether a corresponding note is one of a musical note,
a rest, or a note-tie.

6. The computer-implemented method of claim 1 wherein
the first set of performance data includes a timing of the order
received.

7. The computer-implemented method of claim 1 wherein
each of the first and second sets of performance data in the
graphical grid pattern is configured for real-time step editing.

8. The computer-implemented method of claim 1 wherein
the second plurality of MIDI-based notes is a chord, wherein
the second plurality of notes is arpeggiated based on the order
and changed first set of performance data.

9. A computer-implemented system, comprising:

one or more processors; and

US 9,105,260 B1

21

one or more non-transitory computer-readable storage

mediums containing instructions configured to cause the

one or more processors to perform operations including:

receiving, on a computing device, first set of perfor-
mance data corresponding to a first plurality of MIDI-
based notes, wherein the first set of performance data
is received in a first order;

receiving input data requesting a change to the first set of
performance data;

changing the first performance data based on the input
data;

receiving second set of performance data corresponding
to a second plurality of MIDI-based notes, wherein
the second set of performance data received in a sec-
ond order; and

applying the changes made to the first set of perfor-
mance data to the second set of performance data in
real-time.

10. The system of claim 9 further comprising:

storing the changed first set of performance data in a data-

base; and

retrieving the changed first set of performance data from

the database prior to applying the changed first set of
performance data to the second set of performance data.

11. The system of claim 9 further comprising arranging the
first set of performance data in a graphical grid pattern in the
order received.

12. The system of claim 9 wherein the first set of perfor-
mance data includes one or more of a velocity or an identifier,
wherein the identifier indicates whether the corresponding
note is one of a musical note, a rest, or a note-tie.

13. The system of claim 9 wherein each of the first set of
performance data in the graphical grid pattern is configured
for real-time step editing.

14. A non-transitory computer-program product, tangibly
embodied in a machine-readable non-transitory storage
medium, including instructions configured to cause a data
processing apparatus to:

receive, on a computing device, first set of performance

data corresponding to a first plurality of MIDI-based
notes, wherein the first set of performance data is
received in a first order;

20

25

22

receive input data requesting a change to the first set of

performance data;

change the first set of performance data based on the input

data;

receiving a second set of performance data corresponding

to a second plurality of MIDI-based notes, wherein the
second set of performance data is received in a second
order; and

apply the changes made to the first set of performance data

to the second set of performance data in real-time.

15. The computer-program product of claim 14 further
comprising instructions configured to cause a data processing
apparatus to:

store the changed first set of performance data in a data-

base; and

retrieve the changed first set of performance data from the

database prior to applying the changed first set of per-
formance data to the second set of performance data.

16. The computer-program product of claim 14 further
comprising instructions configured to cause a data processing
apparatus to arrange the first set of performance data in a
graphical grid pattern in the order received.

17. The computer-program product of claim 14 wherein
the first set of performance data includes one or more of a
velocity or an identifier, wherein the identifier indicates
whether the corresponding note is one of a musical note, a
rest, or a note-tie.

18. The computer-program product of claim 14 wherein
the first set of performance data includes a timing of the order
received.

19. The computer-program product of claim 14 wherein
each of the first and second set of performance data in the
graphical grid pattern is configured for real-time step editing.

20. The computer-program product of claim 14 wherein
the second plurality of MIDI-based notes is a chord, wherein
the second plurality of notes is arpeggiated based on the order
and changed first set of performance data.

#* #* #* #* #*

